Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Diabetes Care ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652672

RESUMO

OBJECTIVE: To identify genetic risk factors for incident cardiovascular disease (CVD) among people with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We conducted a multiancestry time-to-event genome-wide association study for incident CVD among people with T2D. We also tested 204 known coronary artery disease (CAD) variants for association with incident CVD. RESULTS: Among 49,230 participants with T2D, 8,956 had incident CVD events (event rate 18.2%). We identified three novel genetic loci for incident CVD: rs147138607 (near CACNA1E/ZNF648, hazard ratio [HR] 1.23, P = 3.6 × 10-9), rs11444867 (near HS3ST1, HR 1.89, P = 9.9 × 10-9), and rs335407 (near TFB1M/NOX3, HR 1.25, P = 1.5 × 10-8). Among 204 known CAD loci, 5 were associated with incident CVD in T2D (multiple comparison-adjusted P < 0.00024, 0.05/204). A standardized polygenic score of these 204 variants was associated with incident CVD with HR 1.14 (P = 1.0 × 10-16). CONCLUSIONS: The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.

2.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38585741

RESUMO

A common feature of human aging is the acquisition of somatic mutations, and mitochondria are particularly prone to mutation due to their inefficient DNA repair and close proximity to reactive oxygen species, leading to a state of mitochondrial DNA heteroplasmy1,2. Cross-sectional studies have demonstrated that detection of heteroplasmy increases with participant age3, a phenomenon that has been attributed to genetic drift4-7. In this first large-scale longitudinal study, we measured heteroplasmy in two prospective cohorts (combined n=1405) at two timepoints (mean time between visits, 8.6 years), demonstrating that deleterious heteroplasmies were more likely to increase in variant allele fraction (VAF). We further demonstrated that increase in VAF was associated with increased risk of overall mortality. These results challenge the claim that somatic mtDNA mutations arise mainly due to genetic drift, instead demonstrating positive selection for predicted deleterious mutations at the cellular level, despite an negative impact on overall mortality.

3.
Diabetes ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602922

RESUMO

Prediabetes is a heterogenous metabolic state with various risk for development of type 2 diabetes (T2D). In this study, we used genetic data on 7,227 US Hispanic/Latinos without diabetes from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) and 400,149 non-Hispanic whites without diabetes from the UK Biobank (UKBB) to calculate five partitioned polygenetic risk scores (pPRSs) representing various pathways related to T2D. Consensus clustering was performed in participants with prediabetes in HCHS/SOL (n=3,677) and UKBB (n=16,284) separately, based on these pPRSs. Six clusters of individuals with prediabetes with distinctive patterns of pPRSs and corresponding metabolic traits were identified in the HCHS/SOL, five of which were confirmed in the UKBB. Although baseline glycemic traits were similar across clusters, individuals in Cluster 5 and Cluster 6 showed elevated risk of T2D during follow-up compared to Cluster 1 (RR=1.29 [95% CI 1.08-1.53] and1.34 [1.13-1.60], respectively). Inverse associations between a healthy lifestyle score and risk of T2D were observed across different clusters, with a suggestively stronger association observed in Cluster 5 compared to Cluster 1. Among individuals with healthy lifestyle, those in Cluster 5 had a similar risk of T2D compared to those in Cluster 1 (RR=1.03 [0.91-1.18]). This study identified genetic subtypes of prediabetes which differed in risk of progression to T2D and in benefits from healthy lifestyle.

4.
Nat Metab ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499766

RESUMO

Metformin is a widely prescribed anti-diabetic medicine that also reduces body weight. There is ongoing debate about the mechanisms that mediate metformin's effects on energy balance. Here, we show that metformin is a powerful pharmacological inducer of the anorexigenic metabolite N-lactoyl-phenylalanine (Lac-Phe) in cells, in mice and two independent human cohorts. Metformin drives Lac-Phe biosynthesis through the inhibition of complex I, increased glycolytic flux and intracellular lactate mass action. Intestinal epithelial CNDP2+ cells, not macrophages, are the principal in vivo source of basal and metformin-inducible Lac-Phe. Genetic ablation of Lac-Phe biosynthesis in male mice renders animals resistant to the effects of metformin on food intake and body weight. Lastly, mediation analyses support a role for Lac-Phe as a downstream effector of metformin's effects on body mass index in participants of a large population-based observational cohort, the Multi-Ethnic Study of Atherosclerosis. Together, these data establish Lac-Phe as a critical mediator of the body weight-lowering effects of metformin.

5.
Blood ; 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320121

RESUMO

Coagulation Factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single variant meta-analysis including up to 45,289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified three candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells (HUVECs). Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P<5×10-9) at seven new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and one for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multi-phenotype analysis of FVIII and VWF identified another three new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, while silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and one for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.

6.
Am J Hum Genet ; 111(3): 445-455, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38320554

RESUMO

Regulation of transcription and translation are mechanisms through which genetic variants affect complex traits. Expression quantitative trait locus (eQTL) studies have been more successful at identifying cis-eQTL (within 1 Mb of the transcription start site) than trans-eQTL. Here, we tested the cis component of gene expression for association with observed plasma protein levels to identify cis- and trans-acting genes that regulate protein levels. We used transcriptome prediction models from 49 Genotype-Tissue Expression (GTEx) Project tissues to predict the cis component of gene expression and tested the predicted expression of every gene in every tissue for association with the observed abundance of 3,622 plasma proteins measured in 3,301 individuals from the INTERVAL study. We tested significant results for replication in 971 individuals from the Trans-omics for Precision Medicine (TOPMed) Multi-Ethnic Study of Atherosclerosis (MESA). We found 1,168 and 1,210 cis- and trans-acting associations that replicated in TOPMed (FDR < 0.05) with a median expected true positive rate (π1) across tissues of 0.806 and 0.390, respectively. The target proteins of trans-acting genes were enriched for transcription factor binding sites and autoimmune diseases in the GWAS catalog. Furthermore, we found a higher correlation between predicted expression and protein levels of the same underlying gene (R = 0.17) than observed expression (R = 0.10, p = 7.50 × 10-11). This indicates the cis-acting genetically regulated (heritable) component of gene expression is more consistent across tissues than total observed expression (genetics + environment) and is useful in uncovering the function of SNPs associated with complex traits.


Assuntos
Proteoma , Transcriptoma , Humanos , Transcriptoma/genética , Proteoma/genética , Herança Multifatorial , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética
7.
medRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38313294

RESUMO

Large-scale gene-environment interaction (GxE) discovery efforts often involve compromises in the definition of outcomes and choice of covariates for the sake of data harmonization and statistical power. Consequently, refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C). This GxE was originally identified by Kilpeläinen et al., with the strongest cohort-specific signal coming from the Women's Genome Health Study (WGHS). We thus explored this GxE further in the WGHS (N = 23,294), with follow-up in the UK Biobank (UKB; N = 281,380), and the Multi-Ethnic Study of Atherosclerosis (MESA; N = 4,587). Self-reported PA (MET-hrs/wk), genotypes at rs295849 (nearest gene: LHX1), and NMR metabolomics data were available in all three cohorts. As originally reported, minor allele carriers of rs295849 in WGHS had a stronger positive association between PA and HDL-C (pint = 0.002). When testing a range of NMR metabolites (primarily lipoprotein and lipid subfractions) to refine the HDL-C outcome, we found a stronger interaction effect on medium-sized HDL particle concentrations (M-HDL-P; pint = 1.0×10-4) than HDL-C. Meta-regression revealed a systematically larger interaction effect in cohorts from the original meta-analysis with a greater fraction of women (p = 0.018). In the UKB, GxE effects were stronger both in women and using M-HDL-P as the outcome. In MESA, the primary interaction for HDL-C showed nominal significance (pint = 0.013), but without clear differences by sex and with a greater magnitude using large, rather than medium, HDL-P as an outcome. Towards reconciling these observations, further exploration leveraging NMR platform-specific HDL subfraction diameter annotations revealed modest agreement across all cohorts in the interaction affecting medium-to-large particles. Taken together, our work provides additional insights into a specific known gene-PA interaction while illustrating the importance of phenotype and model refinement towards understanding and replicating GxEs.

8.
medRxiv ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38352337

RESUMO

Recent genome-wide association studies (GWASs) of several individual sleep traits have identified hundreds of genetic loci, suggesting diverse mechanisms. Moreover, sleep traits are moderately correlated, and together may provide a more complete picture of sleep health, while also illuminating distinct domains. Here we construct novel sleep health scores (SHSs) incorporating five core self-report measures: sleep duration, insomnia symptoms, chronotype, snoring, and daytime sleepiness, using additive (SHS-ADD) and five principal components-based (SHS-PCs) approaches. GWASs of these six SHSs identify 28 significant novel loci adjusting for multiple testing on six traits (p<8.3e-9), along with 341 previously reported loci (p<5e-08). The heritability of the first three SHS-PCs equals or exceeds that of SHS-ADD (SNP-h2=0.094), while revealing sleep-domain-specific genetic discoveries. Significant loci enrich in multiple brain tissues and in metabolic and neuronal pathways. Post GWAS analyses uncover novel genetic mechanisms underlying sleep health and reveal connections to behavioral, psychological, and cardiometabolic traits.

9.
Am J Hum Genet ; 111(1): 133-149, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181730

RESUMO

Bulk-tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, and context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from the blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell-type proportions, we demonstrate that cell-type iQTLs could be considered as proxies for cell-type-specific QTL effects, particularly for the most abundant cell type in the tissue. The interpretation of age iQTLs, however, warrants caution because the moderation effect of age on the genotype and molecular phenotype association could be mediated by changes in cell-type composition. Finally, we show that cell-type iQTLs contribute to cell-type-specific enrichment of diseases that, in combination with additional functional data, could guide future functional studies. Overall, this study highlights the use of iQTLs to gain insights into the context specificity of regulatory effects.


Assuntos
Regulação da Expressão Gênica , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Genótipo , Fenótipo
10.
Cell Genom ; 4(1): 100468, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190104

RESUMO

Chronic kidney disease is a leading cause of death and disability globally and impacts individuals of African ancestry (AFR) or with ancestry in the Americas (AMS) who are under-represented in genome-wide association studies (GWASs) of kidney function. To address this bias, we conducted a large meta-analysis of GWASs of estimated glomerular filtration rate (eGFR) in 145,732 AFR and AMS individuals. We identified 41 loci at genome-wide significance (p < 5 × 10-8), of which two have not been previously reported in any ancestry group. We integrated fine-mapped loci with epigenomic and transcriptomic resources to highlight potential effector genes relevant to kidney physiology and disease, and reveal key regulatory elements and pathways involved in renal function and development. We demonstrate the varying but increased predictive power offered by a multi-ancestry polygenic score for eGFR and highlight the importance of population diversity in GWASs and multi-omics resources to enhance opportunities for clinical translation for all.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/diagnóstico , Taxa de Filtração Glomerular/genética , Herança Multifatorial/genética , Rim/fisiologia
11.
Commun Biol ; 7(1): 107, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233474

RESUMO

We conducted a genome-wide association study (GWAS) in a multiethnic cohort of 920 at-risk infants for retinopathy of prematurity (ROP), a major cause of childhood blindness, identifying 1 locus at genome-wide significance level (p < 5×10-8) and 9 with significance of p < 5×10-6 for ROP ≥ stage 3. The most significant locus, rs2058019, reached genome-wide significance within the full multiethnic cohort (p = 4.96×10-9); Hispanic and European Ancestry infants driving the association. The lead single nucleotide polymorphism (SNP) falls in an intronic region within the Glioma-associated oncogene family zinc finger 3 (GLI3) gene. Relevance for GLI3 and other top-associated genes to human ocular disease was substantiated through in-silico extension analyses, genetic risk score analysis and expression profiling in human donor eye tissues. Thus, we identify a novel locus at GLI3 with relevance to retinal biology, supporting genetic susceptibilities for ROP risk with possible variability by race and ethnicity.


Assuntos
Estudo de Associação Genômica Ampla , Retinopatia da Prematuridade , Recém-Nascido , Humanos , Etnicidade , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
12.
Cell ; 187(2): 464-480.e10, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242088

RESUMO

Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.


Assuntos
Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto , Humanos , Predisposição Genética para Doença , Glaucoma de Ângulo Aberto/genética , População Negra/genética , Polimorfismo de Nucleotídeo Único/genética
13.
Am Heart J Plus ; 362023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38074621

RESUMO

Introduction: The ICAM1 variant rs5491 (p.K56M) is common among Black individuals and has been associated with risk of heart failure with preserved ejection fraction (HFpEF). The pathways by which rs5491 leads to HFpEF are not known. Methods: Among Black individuals within the Multi-Ethnic Study of Atherosclerosis, we evaluated associations of rs5491 with 3 inflammatory biomarkers (high-sensitivity C-reactive protein [hsCRP], interleukin-6 [IL-6], and tumor necrosis factor-α receptor 1 [TNFR-1]). Results: Among 1558 Black participants (mean age 62 ± 10 y, 47 % female), each additional rs5491 allele was associated with higher hsCRP after covariate adjustment (ß: 0.15, SE: 0.07, P = 0.02). Each additional rs5491 allele was associated with higher TNFR-1 (ß: 0.06, SE: 0.02, P = 0.02), but not IL-6 (ß: 0.04, SE: 0.04, P = 0.29). The association between rs5491 and HFpEF remained significant after adjustment for hsCRP. Conclusion: In Black individuals, rs5491 (p.K56M) is associated with higher hsCRP and higher TNFR-1, but not IL-6.

14.
bioRxiv ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37961394

RESUMO

Metformin is a widely prescribed anti-diabetic medicine that also reduces body weight. The mechanisms that mediate metformin's effects on energy balance remain incompletely defined. Here we show that metformin is a powerful pharmacological inducer of the anorexigenic metabolite Lac-Phe in mice as well as in two independent human cohorts. In cell culture, metformin drives Lac-Phe biosynthesis via inhibition of complex I, increased glycolytic flux, and intracellular lactate mass action. Other biguanides and structurally distinct inhibitors of oxidative phosphorylation also increase Lac-Phe levels in vitro. Genetic ablation of CNDP2, the principal biosynthetic enzyme for Lac-Phe, in mice renders animals resistant to metformin's anorexigenic and anti-obesity effects. Mediation analyses also support a role for Lac-Phe in metformin's effect on body mass index in humans. These data establish the CNDP2/Lac-Phe pathway as a critical mediator of the effects of metformin on energy balance.

15.
Circ Genom Precis Med ; 16(6): e004176, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014529

RESUMO

BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D. METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test. RESULTS: Using a Bonferroni-corrected significance threshold of P<1.6×10-4, we identified 3 genes (ATP1B1, ARVCF, and LIPG) associated with CAC and 2 genes (ABCG8 and EIF2B2) associated with carotid intima-media thickness and carotid plaque, respectively, through gene-based rare variant set analysis. Both ATP1B1 and ARVCF also had significantly different associations for CAC in T2D cases versus controls. No significant interaction tests were identified through the candidate single-variant analysis. CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Humanos , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Espessura Intima-Media Carotídea , Fatores de Risco , Aterosclerose/genética , Genômica
16.
Cell Genom ; 3(10): 100401, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37868038

RESUMO

Each human genome has tens of thousands of rare genetic variants; however, identifying impactful rare variants remains a major challenge. We demonstrate how use of personal multi-omics can enable identification of impactful rare variants by using the Multi-Ethnic Study of Atherosclerosis, which included several hundred individuals, with whole-genome sequencing, transcriptomes, methylomes, and proteomes collected across two time points, 10 years apart. We evaluated each multi-omics phenotype's ability to separately and jointly inform functional rare variation. By combining expression and protein data, we observed rare stop variants 62 times and rare frameshift variants 216 times as frequently as controls, compared to 13-27 times as frequently for expression or protein effects alone. We extended a Bayesian hierarchical model, "Watershed," to prioritize specific rare variants underlying multi-omics signals across the regulatory cascade. With this approach, we identified rare variants that exhibited large effect sizes on multiple complex traits including height, schizophrenia, and Alzheimer's disease.

17.
HGG Adv ; 4(4): 100216, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37869564

RESUMO

Transcriptome prediction models built with data from European-descent individuals are less accurate when applied to different populations because of differences in linkage disequilibrium patterns and allele frequencies. We hypothesized that methods that leverage shared regulatory effects across different conditions, in this case, across different populations, may improve cross-population transcriptome prediction. To test this hypothesis, we made transcriptome prediction models for use in transcriptome-wide association studies (TWASs) using different methods (elastic net, joint-tissue imputation [JTI], matrix expression quantitative trait loci [Matrix eQTL], multivariate adaptive shrinkage in R [MASHR], and transcriptome-integrated genetic association resource [TIGAR]) and tested their out-of-sample transcriptome prediction accuracy in population-matched and cross-population scenarios. Additionally, to evaluate model applicability in TWASs, we integrated publicly available multiethnic genome-wide association study (GWAS) summary statistics from the Population Architecture using Genomics and Epidemiology (PAGE) study and Pan-ancestry genetic analysis of the UK Biobank (PanUKBB) with our developed transcriptome prediction models. In regard to transcriptome prediction accuracy, MASHR models performed better or the same as other methods in both population-matched and cross-population transcriptome predictions. Furthermore, in multiethnic TWASs, MASHR models yielded more discoveries that replicate in both PAGE and PanUKBB across all methods analyzed, including loci previously mapped in GWASs and loci previously not found in GWASs. Overall, our study demonstrates the importance of using methods that benefit from different populations' effect size estimates in order to improve TWASs for multiethnic or underrepresented populations.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Humanos , Transcriptoma/genética , Locos de Características Quantitativas/genética , Frequência do Gene , Desequilíbrio de Ligação
18.
Nat Genet ; 55(11): 1912-1919, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37904051

RESUMO

Megabase-scale mosaic chromosomal alterations (mCAs) in blood are prognostic markers for a host of human diseases. Here, to gain a better understanding of mCA rates in genetically diverse populations, we analyzed whole-genome sequencing data from 67,390 individuals from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program. We observed higher sensitivity with whole-genome sequencing data, compared with array-based data, in uncovering mCAs at low mutant cell fractions and found that individuals of European ancestry have the highest rates of autosomal mCAs and the lowest rates of chromosome X mCAs, compared with individuals of African or Hispanic ancestry. Although further studies in diverse populations will be needed to replicate our findings, we report three loci associated with loss of chromosome X, associations between autosomal mCAs and rare variants in DCPS, ADM17, PPP1R16B and TET2 and ancestry-specific variants in ATM and MPL with mCAs in cis.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Mosaicismo , Humanos , População Negra/genética , Hispânico ou Latino/genética , Medicina de Precisão
19.
Sci Rep ; 13(1): 17680, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848499

RESUMO

Despite the prognostic value of arterial stiffness (AS) and pulsatile hemodynamics (PH) for cardiovascular morbidity and mortality, epigenetic modifications that contribute to AS/PH remain unknown. To gain a better understanding of the link between epigenetics (DNA methylation) and AS/PH, we examined the relationship of eight measures of AS/PH with CpG sites and co-methylated regions using multi-ancestry participants from Trans-Omics for Precision Medicine (TOPMed) Multi-Ethnic Study of Atherosclerosis (MESA) with sample sizes ranging from 438 to 874. Epigenome-wide association analysis identified one genome-wide significant CpG (cg20711926-CYP1B1) associated with aortic augmentation index (AIx). Follow-up analyses, including gene set enrichment analysis, expression quantitative trait methylation analysis, and functional enrichment analysis on differentially methylated positions and regions, further prioritized three CpGs and their annotated genes (cg23800023-ETS1, cg08426368-TGFB3, and cg17350632-HLA-DPB1) for AIx. Among these, ETS1 and TGFB3 have been previously prioritized as candidate genes. Furthermore, both ETS1 and HLA-DPB1 have significant tissue correlations between Whole Blood and Aorta in GTEx, which suggests ETS1 and HLA-DPB1 could be potential biomarkers in understanding pathophysiology of AS/PH. Overall, our findings support the possible role of epigenetic regulation via DNA methylation of specific genes associated with AIx as well as identifying potential targets for regulation of AS/PH.


Assuntos
Aterosclerose , Epigênese Genética , Humanos , Epigenoma , Fator de Crescimento Transformador beta3/genética , Medicina de Precisão , Estudo de Associação Genômica Ampla , Metilação de DNA , Ilhas de CpG/genética , Aterosclerose/genética
20.
J Am Heart Assoc ; 12(20): e029090, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37804200

RESUMO

Background The relationship between mitochondrial DNA copy number (mtDNA CN) and cardiovascular disease remains elusive. Methods and Results We performed cross-sectional and prospective association analyses of blood-derived mtDNA CN and cardiovascular disease outcomes in 27 316 participants in 8 cohorts of multiple racial and ethnic groups with whole-genome sequencing. We also performed Mendelian randomization to explore causal relationships of mtDNA CN with coronary heart disease (CHD) and cardiometabolic risk factors (obesity, diabetes, hypertension, and hyperlipidemia). P<0.01 was used for significance. We validated most of the previously reported associations between mtDNA CN and cardiovascular disease outcomes. For example, 1-SD unit lower level of mtDNA CN was associated with 1.08 (95% CI, 1.04-1.12; P<0.001) times the hazard for developing incident CHD, adjusting for covariates. Mendelian randomization analyses showed no causal effect from a lower level of mtDNA CN to a higher CHD risk (ß=0.091; P=0.11) or in the reverse direction (ß=-0.012; P=0.076). Additional bidirectional Mendelian randomization analyses revealed that low-density lipoprotein cholesterol had a causal effect on mtDNA CN (ß=-0.084; P<0.001), but the reverse direction was not significant (P=0.059). No causal associations were observed between mtDNA CN and obesity, diabetes, and hypertension, in either direction. Multivariable Mendelian randomization analyses showed no causal effect of CHD on mtDNA CN, controlling for low-density lipoprotein cholesterol level (P=0.52), whereas there was a strong direct causal effect of higher low-density lipoprotein cholesterol on lower mtDNA CN, adjusting for CHD status (ß=-0.092; P<0.001). Conclusions Our findings indicate that high low-density lipoprotein cholesterol may underlie the complex relationships between mtDNA CN and vascular atherosclerosis.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Diabetes Mellitus , Hipertensão , Humanos , DNA Mitocondrial/genética , Fatores de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , LDL-Colesterol , Variações do Número de Cópias de DNA , Estudos Transversais , Doença das Coronárias/genética , HDL-Colesterol , Hipertensão/epidemiologia , Hipertensão/genética , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...